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(Received August 1988; in flnal form February 24, 1988) 

This paper presents the asymptotic singular fields associated with the fracture analysis of adhesive 
joints and the micromechanics of adhesive failure. The fracture parameters used in adhesives are 
examined and their validity and use in applications is evaluated. Contrary to conventional fracture 
mechanics of homogeneous media the asymptotic field in most adhesive fracture is a function of the 
following: the adhesive and adherend properties, the dimensionality of the crack geometry, and their 
relationship to the interface. The Finite Element Iterative Method (FEIM) is used in analyzing the 
asymptotic fields. The results of the singularities for interfacial cracks of various geometries and 
material properties are presented and discussed in relation to adhesive failures. 

KEY WORDS Finite element iterative method (FEIM); interface cracks; fracture analysis of 
adhesives; micromechanics; singularities; bimaterial interfaces, adhesive joints. 

INTRODUCTION 

Currently, most adhesive fracture testing standards and fracture analysis rely 
heavily on concepts and analysis methods which were developed for the fracture 
of homogeneous materials, even though the adhesive-adherend continuum is 
nonhomogeneous. Some of the adhesive fracture parameters are specimen and 
geometry dependent and, therefore, are not purely material properties as in the 
case of homogeneous materials. In addition, some of the adhesive analysis 
methods, e.g. in Finite Element Analysis, lead to incorrect interpretation of the 
test results, because of a modeling dependence issue. 

Recent advances in the analysis of cracks at bimaterial interfaces has increased 
the understanding of the elastic as well as the inelastic fracture behavior at, or 
near, interfaces. The new finite element approaches to fracture analysis of 
interfaces have provided for the characterization of the asymptotic fields and the 
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150 R. S. BARSOUM 

determination of the associated fracture parameters that are only material 
dependent. 

This paper discusses the results obtained using the Finite Element Iterative 
Method (FEIM)'-' in determining linear and nonlinear asymptotic singularity 
fields of interfacial cracks of various geometries. Cracks at bimaterial interfaces, 
cracks inclined to interfaces, and cracks at corners, are included in the analysis. A 
discussion of some of the problems encountered in current testing of adhesives 
and the possible explanation for such discrepancies is also to be presented. 

The micromechanics and nonlinear effects in adhesive fracture are described as 
they relate to the results from the asymptotic fields computations. 

I FRACTURE TESTING OF ADHESIVE JOINTS AND VARIATIONS IN ENERGY 
RELEASE RATES 

Different types of test specimens are used for determining the fracture toughness 
of adhesives, which depends on the application and the mode of failure. Some of 
the specimen geometries are a derivative of those used in the fracture testing of 
homogeneous materials. 

The Mode I1 fracture specimens are mostly based on the lap shear test, or a 
modification thereof, which is given in the ASTM standards. The end-notch 
specimen, loaded as a cantilever beam or 3-point bend beam, has recently gained 
popularity for Mode I1 because of its possibility for mixed-mode testing. The 
Iospiescu5 and Arcad test fixtures have also been used for Mode I1 and the latter 
also Mode I and mixed mode. Ref. 7 uses a so-called independently-mixed mode 
loaded specimen (IMMLs), which may not be a great deal different from one of 
the above tests. 

Most of the above test specimens are used for the evaluation of the strain 
energy release rates GI and GII, which are calculated from a compliance method 
or some other load/displacement measurement. The energy release rates re- 
ported by different investigators for both Modes I and I1 show a large scatter in 
the data. For example, Ref. 7, using IMMLs, shows for Metlbond 1113-2, 
adhesive (Narmco) that GI, could vary from 2 to 15in-lb/in2 for a fixed 
GI, = 1.5 in-lb/in2. Similarly, that GIlc could vary from 0.8 to 1.7 in-lb/in2 for a 
fixed GI = 15 in-lb/in2. The authors of Ref. 8 used the end-notch specimen in 
evaluating the fracture of FM300 adhesive (American Cyanamid). The results 
indicated that GI, and GI,, measurements depend on the crack length and loading. 
In most cases the scatter in Mode I1 fracture was quite significant. In this case, 
the authors attributed the scatter to nonlinearities. 

It could also be argued that the scatter is due to nonuniformity of specimen 
fabrication procedures. However, similar scatter is observed in the results 
obtained by many other investigators. For example, Ref. 9 shows scatter in the 
results of fatigue crack growth of a mixed-mode adhesively bonded cracked-lap- 
shear specimen. The authors argue that the scatter they observe is of the order of 
7, which is similar to fatigue crack growth results in metals. The fact is that such 
scatter in metals is observed over all results obtained from various investigators, 
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ASYMPTOTIC FIELDS IN JOINT FRACTURE 151 

manufacturers and test specimens, and not for a single investigator and a single 
type of test specimen. In addition, if one compares results from the two loading 
cases in Ref. 9, one can conclude that the scatter is much greater than was 
reported in the paper. 

The results reported in Ref. 10 on the effect of high relative humidity and high 
temperature on the fracture of adhesive showed large scatter. In this investigation 
a compact tension specimen was used and G, was calculated using a standard 
ASTM compliance method. Due to the large scatter in the results, the study 
concluded that G, does not fully characterize the fracture toughness of these 
moisture-resistant and high-temperature epoxy adhesives. 

In conclusion, the energy release rates as calculated from the test results 
discussed above are not purely material properties, but depend on specimen 
geometry, adhesive thickness, degree of mixed mode and on adherend properties. 
The scatter in the results of GI, and GIlc is contrary to results of fracture 
mechanics in homogeneous media, which presents a profound problem to any 
design methodology for adhesives that uses fracture mechanics concepts. The use 
of standard statistical methods in obtaining GI, and Grrc design allowables would 
produce extremely low values, thus erroneously identifying a minuscule load- 
carrying capacity of the adhesive joint. This is not the case, as these adhesives are 
being used by various industries, including airframe manufacturers, which implies 
that their load-carrying capacity is acceptable even with the existence of flaws. 

It is the author's opinion that the direct application of fracture parameters that 
are obtained from the fracture mechanics of homogeneous material represents a 
gross simplification of the fracture process in adhesive materials. One of the 
factors that contributes to the scatter in the strain energy release rate results is 
that mixed modes always exist whenever the fracture is at, or near, an interface. 
The calculation of energy release rate at an interface requires a knowledge of its 
asymptotic field, which will be given in the following sections. Other factors 
include the existence of mixed cohesive and adhesive failure in addition to 
material nonlinearities. The asymptotic fields for these cases will also be 
described in the text. 

I1 MICROMECHANICS OF FRACTURE IN ADHESIVES 

In order to assess the large variability in GI, and Gllc testing, the micromechanics 
of failure should be studied. In adhesive failure, micromechanics of fracture 
refers to the quantitative evaluation of crack propagation which includes cohesive 
and adhesive modes and interactions at the interfaces with the adherend. Figure 1 
shows the manner in which an investigation could proceed in examining crack 
propagation from cohesive to adhesive failure, from mode I to mode I1 to mixed 
mode. The major difficulty in performing such an analysis and, in addition, 
determining the associated fracture parameters, involves the solution of the 
asymptotic singular field at the interfaces at the locations shown in Figure 1. The 
asymptotic field refers to the stress field near a singularity point, e.g. a crack tip, 
as the distance from that point approaches zero. 
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152 R. S. BARSOUM 

Mechonlco of Adhealva labre  

Adharend 

FIGURE 1 Micromechanics analysis of adhesive failure. (a) Finite element idealization of 
cohesive-adhesive crack propagation. (b) Substructuring for FEIM. (c) Mesh for the finite element 
iterative method (FEIM). 

111 NONLINEAR MATERIAL BEHAVIOR EFFECTS IN ADHESIVE FRACTURE 

Kinloch and Shawl' have shown qualitatively that for a toughened epoxy 
adhesive the size of the plastic zone can be related to the adhesive thickness 
which, in turn, correlates with the values of GIc. This conclusion, in addition to 
the arguments discussed above regarding the dependence of the energy release 
rates on the crack length,8 show the need for consideration of asymptotic fields 
for the two cases of cohesive and adhesive cracks shown in Figure 2. 

The plastic zone associated with cohesive failure can be described by the 
HRR-singularity However, the plastic zone associated with adhesive 
failure, Figure 2b, has no analytical solution. A numerical solution for this case 
was recently obtained using the Finite Element Iterative Method. l4 Using FEIM, 
the results for adhesives with power law hardening behavior are presented in this 
paper. 

IV SlNGULARlTlES IN ADHESIVE JOINT 

The asymptotic singularity field for many cases of adhesive fracture are not 
available due to the complexity of the analytical formulations, and lack of their 
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Micromechanlcs - Nonlinear Fracture 

@ Adhesive Failure 

FIGURE 2 Nonlinear effects in the micromechanics of adhesive fracture. (a) Cohesive failure. (b) 
Adhesive failure (c) Other singularities-(corner singularity). 

Corner d- interlace Crack 

Inched Interface Crack 

NO - Flint 
Free Edge 

Fllet 

FIGURE 3 Singularities in adhesives. 
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154 R. S. BARSOUM 

generality. There is a need for investigating adhesive fracture at interfaces which 
accounts for material anisotropy as well as inelastic behavior. Figure 3 shows 
some of the geometries which will be discussed here. They involve interfacial 
cracks at 0" and inclined at angle @ to the interface. The asymptotic field for a 90" 
crack was investigated by Cook and Erdogan;Is however, both materials at the 
interface were isotropic. Anisotropic cases, therefore, should be examined using 
the Finite Element Iterative Method. This method is currently a very desirable 
procedure (see below). 

Other singularities of concern are free-edge and corner singularities. the corner 
singularity problem was raised as a design issue by ad am^.'^,^^ The results for 
corner singularity without and with an interface crack will be given. In addition, 
nonlinear material effects at the corner singularity is investigated using the 
method discussed in Ref. 14. 

V THE FINITE ELEMENT ITERATIVE METHOD (FEI)M 

The Finite Element Iterative Method (FEIM)'+ was originally developed for 
evaluating fields in elastic media. The method relies on the use of general- 
purpose finite element programs in performing the iterations on the circular mesh 
shown in Figure lc. The calculation of these iterations is similar to the usual 
substructuring procedure. The results of the iterations are then analyzed as 
discussed in Refs. 3 and 4 and the asymptotic field as well as the stress intensities 
are calculated. As discussed in Ref. 3, the method evaluates the eigenvalue 
problem solution of a transfer matrix obtained from the stiffness matrix of the 
domain in Figure lc. The FEIM can be applied to two- and three-dimensional 
singularities as well as to any form of material anisotropy at the interface. The 
method was recently extended to the nonlinear regime of power law hardening 
materials.I4 In this case, the method seeks the asymptotic field or eigenfunctions 
of the tangent transfer matrix which can depend on the loading. 

VI INTERFACE CRACKS 

Although joints made with adherends having prepared surfaces are expected to 
show cohesive failure, Mode I test results performed on FM300, Ref. 17, showed 
adhesive, as well as mixed cohesive-adhesive failure. In Mode I1 loading, which 
represents a major application of adhesive joints, adhesive cracks (interfacial 
cracks) are present even if the primary failure is cohesive. It is noted here that, if 
the behavior is elastic, a cohesive crack in Mode I1 will have to bend rather than 
continue to grow in a linear fashion. Plastic behavior would only affect the angle 
of crack branching. Therefore, it is expected that different proportions of mixed 
cohesive-adhesive failure will exist, depending on the surface preparation, the 
environmental effects and the amount of plasticity. 

Zero degree interfacial cracks associated with adhesive failure are, therefore, 
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ASYMPTOTIC FIELDS IN JOINT FRACTURE 155 

fundamental for Mode I1 and mixed-mode testing, the design of joints, and for 
adhesive failures due to poor surface preparation, as well as for the understanding 
of micromechanics of surface preparation effects. Interface cracks (adhesive 
failure) could also be prominent in the presence of high temperature and 
humidity. 

The elastic case of an interface crack for an isotropic material has occupied a 
great deal of the literature for the past 25 years.'s21 For anisotropic media, 
although the eigenfunction method has been used,22 currently the FEIM 
approach has proved to be more general in addition to being readily available for 
the designer and experimental investigator. 

The asymptotic field for a general interface crack has the following displace- 
ment (uj )  and stress (ulm) forms, 

uj = R,{(k, + ik2)r("+i4[4(@) + iC,(O)]} (1) 

(2) qm = ~,{(k, + ik2)r(n-'+ie) [PI,(@) + iQ /m<@>l>  

where i = q(-1)'" and Re is the real part of the function in parentheses. The 
above field is a general form for the singularity at interfaces. For a 0" interface 
crack of a bimaterial elastic medium, a is equal to 1/2. when E = 0 the field is 
non-oscillatory, otherwise if E # 0, the stress field has large oscillations as r -  0, 
which can be seen by expanding Eq. (2), 

a!,,, = r"-'{[k,  COS(E In r )  - k2 sin(& In r)]em(@) 
- [k, sin(& In r )  + k2 COS(E In r)]Q,(@)} (3) 

The displacement field, Eq. (l), also indicates that in a region very close to the 
crack tip, closure and maybe material overlap will occur. The latter is not 
physically feasible and is due the elastic and linear assumptions of the problem. 
Eqs. (1-3) give a good representation of the field remote from the crack tip 
region. 

A major aspect of this field is that both Modes I and I1 are always combined 
even if the remote loading is not. Such a behavior is not only mathematical but 
leads to the zigzag nature of the crack propagation observed in testing, as 
discussed in Figure 1. It is also responsible for part of the scatter of the results 
found in Ref. 7, in addition to the variations in specimen preparation and other 
parameters which are purely random in nature as discussed above. 

i Elastic interface crack 

Figures 4 and 3, respectively, show results for the elastic asymptotic 
field of a 0" interfacial crack (adhesive failure) of an epoxy adhesive which is 
~~~ 

t The stress ordinates in Figures 4-14 are for an arbitrary loading and were not normalized by the 
yield stress or the stress intensity factor. Only the relative values and distributions are of interest. 
Similarly, the radial distance r from the crack tip is dimensionless and does not relate to physical 
dimensions of the specimen. 
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TUETP 

I 
FIGURE 4 Stress field for singular FEIM analysis of an interface crack between epoxy adhesive on 
aluminum adherend. Phase angle change (a = 0.5, E = 0.0669). See footnote on page 159. 

bonded to either aluminum or to a unidirectional glass reinforced epoxy composite 
As expected, the real part of the singularity is the same for both cases (a = 1/2). 
On the other hand, it is clear from the stress distribution and the singularity 
of the field (see Table 11) that one cannot use fracture results obtained from tests 
with one adherend and apply them to another. Even for the same adherend 
material, the direction of the anisotropy will affect the field significantly. 

xi05 
0 . 5  

GWEP -EP EDEG IWTERF. 511,522,512 

5 
1 9.0 
2 

S 
2 
2 -0.s 

5 -1.0 
1 
1 

-1  .s 
i 

w r a  

FIGURE 5 Stress field for singular FEIM analysis of an interface crack between epoxy adhesive on 
graphite/epoxy (0) adherend. Phase angle change (u=0.5, ~=0.0511).  See footnote on page 159. 
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ii Nonlinear material behavior at interface crack 

The asymptotic solution for an interface crack in a nonlinearly hardening material 
has been recently obtained by FEIM.I4 It is presented here for the hardening 
power of 3 and 9 which identifies a range of behavior for many ductile adhesives 
of the class of the high temperature FM300 (American Cyanimid) and the 
plasticized or modified expoxy adhesives. The nonlinear behavior of these 
materials is assumed to be of the Ramberg-Osgood form, 

Ee = aa + (a/a,,). (4) 
where E is the modulus of elasticity, e the strain, a the stress, a and a,, are 
constants and n is the hardening power. In Ref. 14 it was shown that the 
asymptotic field depends on the hardening power in a manner similar to the 
HRR-field for homogeneous In addition, it was shown that the field 
depends on the mode of loading and size of the plastic zone in relation to the 
distance from the crack tip. The field was found to be represented by the form of 
Eqs. (1) and (2); however a, E and the rest of the functions are dependent on a 
dimensionless distance Rp, which is the ratio of the distance from the crack tip to 
the end of the region of interest divided by the overall plastic zone size.? 
Therefore, the asymptotic field can be written as: 

uj(Rp) = R,{(kf  + ik$)r("p'ieP)[F~(@) + iCp(O)]} 

alm(Rp) = R,{(kf + ik$)r(-mpp-iEp) [pPm(@) + iQPm(0)l) 
(5 1 
(6)  

Table I gives the values of crp and E~ for various values of Rp. When E~ = 0, 
practically, the field does not change any more for a region closer to the crack tip. 
However, the distances at which that occurs are extremely small such that they 
could be of the order of atomic distances. 

The asymptotic field for an interface crack of a power law hardening material 
is, therefore, more complicated than the HRR-field for homogeneous materials, 
which is independent of the relative distances from the crack tip. In the interface 

TABLE I 
Interface singularity for power law hardening material 

Power (n) 1/(1 + n) RP ffP EP 

3 114 1 0.253 0.0675 
10-2 0.260 0.0655 

0.280 0.0554 
10-6 0.295 0.0405 

9 1/10 1 0.106 0.0829 
10-2 0.139 0.0700 

0.154 0. m 
Elastic 112 - 0.5 0.0935 

10-8 0.280 0. m 

?Using the same approach, the HRR-field for a homogeneous material was found to be 
independent of Rp, which agrees with the analytical solution of Ref. 12 and 13. 
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158 R. S. BARSOUM 

crack case, one has to evaluate the asymptotic field for every application or test. 
The Finite Element Iterative Method (FEIM) offers a practical approach for 
characterizing the field. 

The practical implications of the results presented above requires the evalua- 
tion of the asymptotic field represented by Eqs. (5) and (6), at the same relative 
material distances (Rp), in both the test specimen where the fracture parameters 
(]-integral, or strain energy density) are measured and in the application where 
the fracture is being predicted. The selection of Rp could be based on 
micromechanical dimensions (material), or on practical dimensions where measu- 
rements could be made accurately. It could be concluded from the above results 
that, as in the elastic case of interface cracks, interfacial adhesive fracture will 
always involve mixed-mode failure (Modes I and 11) unless one is concerned with 
extremely small distances from the crack tip. 

It should be noted here, that although the above results deal with a rigid 
substrate, they represent for all practical purposes the behavior of most 
adherends with respect to ductile adhesives (e.g. FM300). Therefore, the results 
for the asymptotic field shown here, and in Ref. 14, will represent most of the 
applications of adhesives. If, however, anisotropy of the adherend is of 
importance, it has to be included in the finite element model used in the FEIM as 
discussed above or in Ref. 14. The cross-ply modulus or the plasticity of the 
matrix could also affect the field. 

VII. INCLINED INTERFACE CRACKS 

Currently, there is no general analytical expression for elastic media with 
inclined cracks at interfaces. As stated earlier, this problem is fundamental to the 
investigation of crack propagation and the micromechanics of failure at inter- 
faces. Presented here are some of the results that were obtained from FEIM for 
an expoxy adhesive which is bonded to either aluminum or graphite/epoxy 
composite adherends. The material properties used in the analysis were, 

Adhesive: v = 0.35, E = 0.45 X lo6 psi 

Adherend: 
Aluminum v = 0.30, E = 10 X lo6 psi 

G r / E p  v12 = vI3 = 0.3, ~ 2 3  = 0.54 

E12 = 20 X lo6, 

G12 = 0.8 x lo6, 
E22 = E33 = 1.4 X lo6 psi 

G23 = 0.6 x lo6 psi 

The asymptotic field is in the same form as Eqs. (1) and (2). The values of (Y 

and E depend on the angle of inclination @ of the crack to the interface which are 
given in Table 11. Figures 6-8 show the stresses for a crack at inclination @ = 45" 
to the adhesive/aluminum interface. It is clear that the stresses are non-oscillatory 
in contrast to the case of an 0" interface crack. 
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TABLE I1 
Inclined interface crack 

Expoxy adhesive-aluminum adherend 
Angle of crack 

cp ff & 

90" 0.658 O.Oo0 
45" 0.561 O.Oo0 
30" 0.560 O . O o 0  
22.5" 0.570 0.0478 
0" 0.500 0.0669 

Epoxy adhesive-graphite/epoxy adherend 
Angle of crack 

cp ff E 

45" 0.536 O.OO0 
0" 0.500 0.051 1 

At Q, = O " ,  Williams's has shown analytically that in order to satisfy the 
governing equations for a crack at a bimaterial interface, the displacement 
function has to be of the form of Eqs. (1-3), with E # 0. On the other hand, for a 
crack at @=90" to the bimaterial interface, it was shown in Ref. 15 that the 
governing equations are satisfied with E = 0, which is similar to  singularities in 
homogeneous materials. 

In the FEIM, Eq. (1) is used and the singularity (a + k )  is calculated from the 
characteristic equation, Ref. 4. If the roots of the characteristic equation are real, 
then E = 0, if they are complex, then E # 0. For cracks at any angle @, other than 
90" and 0", there is a transition from real to complex singularity at aC. This angle 
aC is a function of the material properties of the adhesive and adherend and their 
anisotropy. For the epoxy adhesive to aluminum interface the transition angle 

x1e4 

5 
1 
1 

m m  

FIGURE 6 Stress distribution (all) at various radii from the crack tip for a 45" interface crack 
(epoxy adhesive/aluminum adherend). N o  phase angle change (a = 0.561, E = 0). See footnote on 
page 159. 
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x1e4 
8.5 

5 8.8 
2 
2 

-8.5 

-1.8 

-1.5 

-2.8 
8 76' 160. 226' 30d 366 

THETR 

FIGURE 7 Stress distribution (au) at various radii from the crack tip for a 45" interface crack 
(epoxy adhesive/aluminum adherend). No phase angle change (a = 0.561, E = 0). See footnote on 
page 159. 

occurs in the range 3O0>cPC>22.5". Therefore, since E > O  for @sac, the 
stresses are oscillatory. 

In the above analysis, if the maximum principal stress is used as a criterion for 
crack propagation, then from Figures 6 and 7 it can be predicted that the crack 
would propagate along the Ep/Al interface before changing direction. 

Vlll CORNER SINGUIARITY-ADHESIVE INTERFACE 

The corner singularity at an adhesive interface is an important problem for joint 
design. l6 In evaluating the asymptotic field for corner singularity it is essential to 

r u m  
FIGURE 8 Stress distribution (q2) at various radii from the crack tip for a 45" interface crack 
(epoxy adhesive/aluminum adherend). No phase angle change (a = 0.561, E = 0). See footnote on 
page 159. 
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consider the anisotropy of the adherend. Again, the FEIM is well suited to 
perform this analysis. For simplicity, the results for a rigid interface for both the 
elastic and nonlinearly hardening adhesives are presented in this paper. 

i Elastic adhesive at rigid corner 

This case has been solved by Bogy and WangZ3 and the results can be obtained 
directly from graphs in their paper which are, however, difficult to read in the 
region of interest. Solutions are also available from equations given in the paper, 
but they are complicated to solve. The FEIM was applied to two cases: a square 
rigid corner and an obtuse angle rigid corner. Both these cases have been 
investigated experimentally.26 The results for the square corner are given in 
Figures 9-11, and the asymptotic field obtained is in the form, 

qj = ~ ~ r - ~ . ~ ~ k ~ ( @ )  + ~ ~ r - ~ . ~ ~ g ~ ~ ( ~ )  

aij = K1r-'."Lj(@) + K2r-0.28gij(0) 

( 7 4  

The singular field for the 135" rigid corner with the same adhesive properties is 
given by: 

The higher singularity in the most general loading cases of the above equations 
will dominate the field, i.e. the second term will be the dominant term. However, 
for a symmetric loading about the corner the first term will dominate. The results 
in Figures 9-11 are for this symmetric case. 

From Eqs. (7) it is clear that the obtuse angle notch gives a much weaker 
singularity and hence the greater failure load; this was observed in Ref. 26. In 

(7b) 

SORHTCH ELASTIC 51 1: K( r- 0 2 1 2  1 6, ( 0 )  

T -3888 

- _ , ,  

i f  
s -4808 + -5088 

-6888 

f -7800 

7 - 4 7 -  I ' 1 ' ' 1 

8 22.5' 4?. 6 7 . b  sb. 11:.5' lJ5- 

rnETI 

FIGURE 9 Elastic-stress field for corner singularity in an epoxy adhesive. Stresses u,, at various 
distances from the corner. See footnote on page 159. 
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SORNTCH ELRSTIC 522 = y ( ~ - ' ' Z 2 L )  $1/61) 

/r 

-1588 

THETA 

-1758 

FIGURE 10 Elastic-stress field for comer singularity in an epoxy adhesive. Stresses 
distances from the corner. See footnote on page 159. 

uZ2 at various 

Eq. (7), the stress intensities ( K i )  can not be used alone to compare the results of 
two cases because the singular fields are different. 

ii Nonlinearly hardening adhesive at a square rigid corner 

The procedure discussed in Ref. 14 and in section VI for interface cracks was 
applied to this case. The adhesive behavior was assumed to follow Eq. (4) with 

P 

\ 
d// 

2 8 8 1 ,  I I I I , I , ;  I 
8 22.5 46 67.5 go 112.5 135 

THETA 

FIGURE 11 
distances from the corner. See footnote on page 159. 

Elastic-stress field for corner singularity in an epoxy adhesive. Stresses u,* at various 
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1 - 5 . 5 4  

THETA 

FIGURE 12 Plastic-stress field for corner singularity in an epoxy adhesive (n = 9). Stresses ull at 
various distances from the corner. Nonseparable field. See footnote on page 159. 

n = 0, which corresponds to toughened epoxy adhesives. Figures 12 and 13 show 
the distribution of the stresses at various radii from the singularity. When the 
FEIM was applied to this field, convergence was not obtained. As discussed in 
Ref. 14, the lack of convergence of FEIM indicates that the asymptotic field 
cannot be described by a separable form. Therefore, Eqs. (5-7) or other forms of 
separable singularities cannot represent that field. On the other hand the strain 
energy density, shown in Figure 14, was found to behave as, 

O..&..+ r-0.19 

In this case, if the stress field is chosen to be approximated by a power singularity 
(8) 11 Jl 

SORNTCH N.9, RP.1 .W-4 

2888 ::I 1 9 9 9  

22.g 45' 67.6' go' 112.6' 136' 
nim 

FIGURE 13 Plastic-stress field for corner singularity in an epoxy adhesive (n  = 9). Stresses uIZ at 
various distances from the comer. Nonseparable field. See footnote on page 159. 
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6cj I €31 R Us R SORNTCH RP-1.8E-6 

N - 9  

0 
8 20 40 68 80 100 128 148 

RADIAL DISTANCE 

FIGURE 14 Plastic-strain energy density for corner singularity in an epoxy adhesive (n = 9). Curve 
fitting of ail. ci j .  r at various angles vs. radial distance. See footnote on page 159. 

as in Eqs. (7), then the FEIM together with Eq. (8) give a stress singularity which 
varies between -0.02 and -0.12 for each variation. Assuming an HRR-field,'Z.13 
for n = 9, the singularity in the stress is given by [ - (1/(1+ n)) = - 0.11. This 
value, as expected, is near the upper bound of the results obtained by FEIM. It is 
noted here that Ref. 24 develops a diffrent formula for the singularity using a 
heuristic approach combined with the HRR-field. 

iii Crack at a corner 

As discussed above this case, shown in Figure 15, is of importance to design 
and micromechanics of failure. The asymptotic field was found by applying the 
FEIM to be represented by: 

= R,{(k ,  + ikz)r(-0.66-i0.036) [f' /rn(@) + iQ/rn(@)l) (9) 
which shows a stronger singularity than a crack in a homogeneous material or a 
crack at a straight interface. Of course, a singularity in plane strain greater than 
0.5 is not admissible from J-integral arguments. However, this field satisfies the 
finite strain energy requirement (as r+  0 the strain energy density singularity is 
less than 2). Therefore, Eq. 9 can represent a very strong initiation site for 
adhesive joints with defects near the square corner. The case of a 135" corner was 
also analyzed and the stress singularity was found to be 

[PI,(@) + iQlrn(@)l> (10) - ~ , { ( k ,  + ikz)r(-0.4-i0.018) 
UIrn - 

which is oscillatory with the real part less than 0.5 and a small imaginary part E ,  
which could be ignored for all practical purposes. 

The singularity results in Eqs. (9) and (10) explain what Adams" found from 
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FIGURE 15 Finite element mesh for crack and corner singularities. FEIM results in (la. - 11 >0.5). 

his finite element analysis, and the experimental results of Kinloch26 which were 
presented at this Conference. They found that an obtuse angle corner joint 
adherend had three times the failure strength of that of the square corner 
adherend. Therefore, a square corner adherend with any pre-existing flaw will 
lead to adhesive failure before any cohesive failure (r-'.' singularity) could be 
initiated. 

CONCLUSIONS 

The Finite Element Iterative Method was applied to several problems involving 
the micromechanics of failure and design of adhesive joints. It was shown that 
that the singularity is oscillatory when cracks are inclined at angles less than cDc, 
where (30" > cDc > 22.5"), in a manner similar to interfacial cracks. Results also 
indicated that the oscillatory exponent for aluminum is stronger than for the 
graphite/epoxy composite adherend, thus the mixture of Mode I and I1 is larger. 
The degree of mixture of modes can be considered a rationale for the resulting 
scatter in the GI, and GIIc data. 

The case of a crack singularity combined with a square-corner singularity was 
shown to be stronger than that of an obtuse angle corner. This was shown to 
correlate with some recent test results presented at this Conference25726. The 
results discussed in this paper include also singularities at interfaces of nonlinear 
materials, zero-degree interface cracks and square-corner singularities. The 
results of this research are pertinent to the understanding of micromechanics of 
adhesive failure. 
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